SYNTHESIS OF NATURAL PRODUCTS VIA TERTIARY AZIDES I 2-ALKYL AND CIS 2,6 ALKYLPIPERIDINE ALKALOIDS

A.ASTIER and M.M. PLAT

Laboratoire de Pharmacie Chimique II, Faculté de Pharmacie Université Paris XI, rue J.B. Clément 92290 Chatenay France.

(Received in UK 27 February 1978; accepted for publication 13 April 1978)

By action of the N_3H/BF_3-OEt_2 reagent on trisubstituted olefins or tertiary alcohols, a certain number of tertiary azides have been synthesized (I,2,3). The acid-catalysed breakdown of cyclopentane tertiary azides provides α -substituted piperideines in good yield. The hereby related work is the application of this reaction to the synthesis of piperidine alkaloids: γ -coniceine, ($^+$) coniine and ($^+$) dihydropinidine (and similar compounds). 1-Hydroxy n-propyl cyclopentane $^+$, upon treatment with the above reagent, leads to 1-azido n-propylcyclopentane $^-$ in 71% yield (distilled), bp $^-$ is 71-72°, $^-$ in $^-$ 22°: 1,4670, IR ($^-$ in $^-$ in NMR: t 0,95 ppm (J=7 Hz), MS: M $^+$ 153, m/e 125,110. At 0°, $^-$ undergoes an acid-catalysed breakdown in CHCl $^-$ with $^+$ is identified by its physical and chemical data as α -propylpiperideine or γ -coniceine $^-$ (4). By hydrogenation (Pd/C 10%), $^-$ is transformed in 95% yield into 2-propylpiperidine $^-$ or (+) coniine identical with an authentic sample.

The overall yield is 63% and , in a similar manner , 1-alkyl cyclopentanols 5 and 9 provide 2-alkyl piperidines 8 and 12 respectively in good yield too. The reaction was extended to the synthesis of 2,6-disubstituted piperidine alkaloids starting from 2-alkyl 1-methyl cyclopentanols (±) Dihydropinidine 17 was obtained following the undermentioned path. 2-allyl cyclopentanone treated by methylmagnesium iodide in ether gives 2-allyl 1-methyl cyclopentanol 13, catalytic hydrogenation of which provides 2-propyl 1-methyl cyclopentanol 14, bp 18: 82-83°, mixture of trans Me/C₃H₇ 61%, cis 39% (VPC and NMR), By traitment of 14 with N₃H/BF₃-OEt₂ in CH₂Cl₂ (0°,30 min) 2-propyl 1-azido cyclopentane 15 is obtained: C₉H₁₇N, mixture of trans Me/C₃H₇ 37%, cis 63% (VPC and NMR), IR (VN₃) 2095 cm⁻¹, MS: M⁺ 167. Its acid-catalysed breakdown leads to 16: IR (VC=N) 1660 cm⁻¹. The crude mixture is hydrogenated (Pd/C 10%) and provides 17 which is identified as (±) dihydropinidine 17 on the basis of physical data (5).

The overall yield is about 60% ($\underline{13} \rightarrow \underline{17}$), whereas HILL's synthesis by N-acyl lactam rearrangement afforded only 15% yield (5). Thus, the acid-catalysed breakdown of cyclopentane tertiary azides permits the access to a series of 2-substituted and 2,6-disubstituted piperidine alkaloids with the best yields known up to now (6).

REFERENCES

- (1) A.ASTIER, thèse Doctorat es Sciences, Paris XI Orsay Juin 1976.
- (2) A.ASTIER, A.PANCRAZI and Q.KHUONG-HUU, Tetrahedron 1978, in press (part one).
- (3) A.ASTIER, A.PANCRAZI and Q.KHUONG-HUU, Tetrahedron 1978, in press (part two).
- (4) R.H.F. MANSKE, The Alkaloids, vol XI, Acad. Press, N.Y.
- (5) R.K. HILL and T.YURI, Tetrahedron, 33, 1569 (1977).
- (6) DOAN-HUYNH-DONG , Thèse 3° cycle , Paris Orsay 1977 .
 - E. LEETE and R.A. CARVER, J. Org. Chem., 40, 2151 (1975).